Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Chem Neuroanat ; 138: 102420, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626816

RESUMO

Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.

2.
World J Stem Cells ; 16(2): 151-162, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455099

RESUMO

BACKGROUND: Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity. During osteoporosis, bone mesenchymal stem cells (BMSCs) exhibit an increased ability to differentiate into adipocytes and a decreased ability to differentiate into osteoblasts, resulting in bone loss. Jumonji domain-containing 1C (JMJD1C) has been demonstrated to suppress osteoclastogenesis. AIM: To examine the effect of JMJD1C on the osteogenesis of BMSCs and the potential underlying mechanism. METHODS: BMSCs were isolated from mouse bone marrow tissues. Oil Red O staining, Alizarin red staining, alkaline phosphatase staining and the expression of adipogenic and osteogenic-associated genes were assessed to determine the differentiation of BMSCs. Bone marrow-derived macrophages (BMMs) were incubated with receptor activator of nuclear factor-kappa Β ligand to induce osteoclast differentiation, and osteoclast differentiation was confirmed by tartrate-resistant acid phosphatase staining. Other related genes were measured via reverse transcription coupled to the quantitative polymerase chain reaction and western blotting. Enzyme-linked immunosorbent assays were used to measure the levels of inflammatory cytokines, including tumor necrosis factor alpha, interleukin-6 and interleukin-1 beta. RESULTS: The osteogenic and adipogenic differentiation potential of BMSCs isolated from mouse bone marrow samples was evaluated. JMJD1C mRNA and protein expression was upregulated in BMSCs after osteoblast induction, while p-nuclear factor-κB (NF-κB) and inflammatory cytokines were not significantly altered. Knockdown of JMJD1C repressed osteogenic differentiation and enhanced NF-κB activation and inflammatory cytokine release in BMSCs. Moreover, JMJD1C expression decreased during BMM osteoclast differentiation. CONCLUSION: The JMJD1C/NF-κB signaling pathway is potentially involved in BMSC osteogenic differentiation and may play vital roles in the pathogenesis of osteoporosis.

3.
Huan Jing Ke Xue ; 45(2): 635-644, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471904

RESUMO

In recent years, ozone (O3) has become an increasingly important air pollutant in China. Identifying the sensitivity of O3 to the precursors volatile organic compounds (VOCs) and nitrogen oxides (NOx) can help make effective abatement strategies. This study compared three methods for determining O3-VOCs-NOx sensitivity: simulated photochemical indicator values and sensitivity coefficients derived from a three-dimensional air quality model and an observation-based model (OBM), with a case study involving an O3 pollution event that occurred in Nanjing in late July 2017. The results showed that O3 sensitivity based on the photochemical indicator and sensitivity coefficients demonstrated similar spatial variations (over 50% of the grid cells of Nanjing exhibiting identical O3 sensitivity). However, sensitivity coefficients identified a larger number of areas within a transitional O3 sensitivity regime, as opposed to the VOCs- or NOx-limited regime identified by the photochemical indicator. The determination of the latter was affected by the adopted threshold values. The OBM relied on the quality of the observational data. For example, positive biases in observed NO2 could lead to an underestimation of O3 sensitivity to NOx with the OBM. During the high pollution period, the three methods exhibited significant disparities. The photochemical indicator tended to suggest the VOCs-limited condition, whereas the OBM and sensitivity coefficients indicated the NOx-limited or transitional regimes.

4.
Plant Biotechnol J ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184781

RESUMO

Plant health is intricately linked to crop quality, food security and agricultural productivity. Obtaining accurate plant health information is of paramount importance in the realm of precision agriculture. Wearable sensors offer an exceptional avenue for investigating plant health status and fundamental plant science, as they enable real-time and continuous in-situ monitoring of physiological biomarkers. However, a comprehensive overview that integrates and critically assesses wearable plant sensors across various facets, including their fundamental elements, classification, design, sensing mechanism, fabrication, characterization and application, remains elusive. In this study, we provide a meticulous description and systematic synthesis of recent research progress in wearable sensor properties, technology and their application in monitoring plant health information. This work endeavours to serve as a guiding resource for the utilization of wearable plant sensors, empowering the advancement of plant health within the precision agriculture paradigm.

5.
FASEB J ; 38(2): e23444, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252081

RESUMO

Metabolic reprogramming is a hallmark of cancer. The nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway maintains sufficient cellular NAD levels and is required for tumorigenesis and development. However, the molecular mechanism by which NAMPT contributes to HBV-associated hepatocellular carcinoma (HCC) remains not fully understood. In the present study, our results showed that NAMPT protein was obviously upregulated in HBV-positive HCC tissues compared with HBV-negative HCC tissues. NAMPT was positively associated with aggressive HCC phenotypes and poor prognosis in HBV-positive HCC patients. NAMPT overexpression strengthened the proliferative, migratory, and invasive capacities of HBV-associated HCC cells, while NAMPT-insufficient HCC cells exhibited decreased growth and mobility. Mechanistically, we demonstrated that NAMPT activated SREBP1 (sterol regulatory element-binding protein 1) by increasing the expression and nuclear translocation of SREBP1, leading to the transcription of SREBP1 downstream lipogenesis-related genes and the production of intracellular lipids and cholesterol. Altogether, our data uncovered an important molecular mechanism by which NAMPT promoted HBV-induced HCC progression through the activation of SREBP1-triggered lipid metabolism reprogramming and suggested NAMPT as a promising prognostic biomarker and therapeutic target for HBV-associated HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nicotinamida Fosforribosiltransferase , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Vírus da Hepatite B , Lipogênese , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Nicotinamida Fosforribosiltransferase/genética
6.
World J Gastrointest Oncol ; 16(1): 244-250, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38292849

RESUMO

BACKGROUND: Schwannomas are uncommon tumors originating from Schwann cells, forming the neural sheath. They account for approximately 2%-6% of all mesenchymal tumors and are most commonly identified in peripheral nerve trunks, with rarity in the gastrointestinal tract. Among gastrointestinal locations, the stomach harbors the majority of nerve sheath tumors, while such occurrences in the sigmoid colon are exceptionally infrequent. CASE SUMMARY: This study presented a clinical case involving a 60-year-old female patient who, during colonoscopy, was diagnosed with a submucosal lesion that was later identified as a nerve sheath tumor. The patient underwent surgical resection, and the diagnosis was confirmed through immunohistochemistry. This study highlighted an exceptionally uncommon occurrence of a nerve sheath tumor in the sigmoid colon, which was effectively managed within our department. Additionally, a comprehensive review of relevant studies was conducted. CONCLUSION: The preoperative diagnosis of nerve sheath tumors poses challenges, as the definitive diagnosis still relies on pathology and immunohistochemistry. Although categorized as benign, these tumors have the potential to demonstrate malignant behavior. Consequently, the optimal treatment approach entails the complete surgical excision of the tumor, ensuring the absence of residual lesions at the margins.

7.
CNS Neurosci Ther ; 30(2): e14360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37448105

RESUMO

BACKGROUND: One-fourth of Parkinson's disease (PD) patients suffer from cognitive impairment. However, few neuroimaging markers have been identified regarding cognitive impairment in PD. OBJECTIVE: This study aimed to explore the association between third ventricular width by transcranial sonography (TCS) and cognitive decline in PD. METHOD: Participants with PD were recruited from one medical center in China. Third ventricular width was assessed by TCS, and cognitive function was analyzed by the Mini-Mental State Examination (MMSE). Receiver operating characteristic (ROC) analysis and Cox model analysis were utilized to determine the diagnostic and predictive accuracy of third ventricular width by TCS for cognitive decline in PD patients. RESULT: A total of 174 PD patients were recruited. Third ventricular width was negatively correlated with MMSE scores. ROC analysis suggested that the optimal cutoff point for third ventricular width in screening for cognitive impairment in PD was 4.75 mm (sensitivity 62.7%; specificity 75.6%). After 21.5 (18.0, 26.0) months of follow-up in PD patients without cognitive impairment, it was found that those with a third ventricular width greater than 4.75 mm exhibited a 7.975 times higher risk of developing cognitive impairment [hazard ratio = 7.975, 95% CI 1.609, 39.532, p = 0.011] compared with patients with a third ventricular width less than 4.75 mm. CONCLUSION: Third ventricular width based on TCS emerged as an independent predictor of developing cognitive impairment in PD patients.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Terceiro Ventrículo , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Terceiro Ventrículo/diagnóstico por imagem , Cognição , Ultrassonografia
8.
J Clin Invest ; 134(5)2024 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127458

RESUMO

Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.


Assuntos
Líquidos Corporais , Surfactantes Pulmonares , Adulto , Animais , Criança , Humanos , Lactente , Camundongos , Trifosfato de Adenosina , Pulmão , Tensoativos
9.
Curr Genomics ; 23(6): 412-423, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920555

RESUMO

Background: Sepsis is an uncontrolled systemic inflammatory response. Long noncoding RNAs (lncRNAs) are involved in the pathogenesis of sepsis. However, little is known about the roles of lncRNAs in sepsis-induced myocardial dysfunction. Objective: We aimed to determine the regulatory mechanism of lncRNAs in sepsis-induced myocardial dysfunction. Methods: In this study, we analysed the lncRNA and mRNA expression profiles using microarray analysis. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction network, and gene set enrichment analysis were used to evaluate the data. We also constructed coding and noncoding coexpression and competing endogenous RNA networks to investigate the mechanisms. Results: In vivo lipopolysaccharide -induced sepsis rat model was established. A total of 387 lncRNAs and 1,952 mRNAs were identified as significantly changed in the left ventricle. Kyoto Encyclopedia of Genes and Genomes analysis of mRNAs showed that the upregulated genes were mainly enriched in the "complement and coagulation cascade pathway" and "immune-related biological processes" terms. Eight significantly changed lncRNAs detected by RT-qPCR may be responsible for these processes. A competing endogenous RNA network was generated, and the results indicated that eight lncRNAs were related to the "calcium ion binding" process. Conclusion: These results demonstrate that crosstalk between lncRNAs and mRNAs may play important roles in the development of sepsis-induced myocardial dysfunction.

11.
Acta Biomater ; 170: 519-531, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659729

RESUMO

Understanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate. Such substrate nesting is sufficient for the 3D assembly and polarization of hPSCs required for cyst organization, even without 3D ECM overlay. Furthermore, we identify that the reversible substrate nesting and cyst morphogenesis also require appropriate activation of ROCK-Myosin II pathway. This indicates a unique set of tissue morphomechanical signaling mechanisms that clearly differ from the canonical cystogenic mechanism previously reported in 3D ECM. Our findings highlight an unanticipated synergy between mechanical microenvironment and mechanotransduction in controlling tissue morphogenesis and suggest a mechanics-based strategy for generation of hPSCs-derived models for early human embryogenesis. STATEMENT OF SIGNIFICANCE: Soft substrates can induce the self-organization of human pluripotent stem cells (hPSCs) into cysts without three-dimensional (3D) extracellular matrix (ECM) overlay. However, the underlying mechanisms by which soft substrate guides cystogenesis are largely unknown. This study shows that substrate nesting, resulting from cell-substrate interaction, plays an important role in cyst organization, including 3D assembly and apical-basal polarization. Additionally, actomyosin contractility mediated by the ROCK-Myosin II pathway also contributes to the substrate deformation and cyst morphology. These findings demonstrate the interplay between the mechanical microenvironment and cells in tissue morphogenesis, suggesting a mechanics-based strategy in building hPSC-derived models for early human embryo development.

12.
World J Gastroenterol ; 29(34): 5082-5090, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37753367

RESUMO

BACKGROUND: Neuroendocrine tumors (NET) are rare heterogeneous tumors that arise from neuroendocrine cells throughout the body. Acromegaly, a rare and slowly progressive disorder, usually results from a growth hormone (GH)-secreting pituitary adenoma. CASE SUMMARY: We herein describe a 38-year-old patient who was initially diagnosed with diabetes. During colonoscopy, two bulges were identified and subsequently removed through endoscopic submucosal dissection. Following the surgical intervention, the excised tissue samples were examined and confirmed to be grade 2 NET. 18F-ALF-NOTATATE positron emission tomography-computed tomography (PET/CT) and 68Ga-DOTANOC PET/CT revealed metastases in the peri-intestinal lymph nodes, prompting laparoscopic low anterior resection with total mesorectal excision. The patient later returned to the hospital because of hyperglycemia and was found to have facial changes, namely a larger nose, thicker lips, and mandibular prognathism. Laboratory tests and magnetic resonance imaging (MRI) suggested a GH-secreting pituitary adenoma. The pituitary adenoma shrunk after treatment with octreotide and was neuroendoscopically resected via a trans-sphenoidal approach. Whole-exome sequencing analysis revealed no genetic abnormalities. The patient recovered well with no evidence of recurrence during follow-up. CONCLUSION: 18F-ALF-NOTATE PET/CT and MRI with pathological analysis can effectively diagnose rare cases of pituitary adenomas complicated with rectal NET.


Assuntos
Adenoma , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Neoplasias Retais , Humanos , Adulto , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/cirurgia , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adenoma/diagnóstico por imagem , Adenoma/cirurgia , Neoplasias Retais/cirurgia
13.
Eur J Med Res ; 28(1): 305, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649072

RESUMO

BACKGROUND: Endometriosis is associated with systemic metabolic indicators, including body mass index (BMI), glucose metabolism and lipid metabolism, while the association between metabolic indexes and the occurrence and assisted reproductive technology (ART) outcome of endometriosis is unclear. We aimed to evaluate the characteristics of systemic metabolic indexes of endometriosis patients with infertility and their effects on pregnancy outcome after ART treatment. METHODS: A retrospective cohort study involve 412 endometriosis patients and 1551 controls was conducted. Primary outcome was metabolic indexes, and secondary measures consisted of the influence of metabolic indexes on the number of retrieved oocytes and ART outcomes. RESULTS: Endometriosis patients had higher insulin (INS) [6.90(5.10-9.50) vs 6.50(4.80-8.90) µU/mL, P = 0.005]. A prediction model for endometriosis combining the number of previous pregnancies, CA125, fasting blood glucose (Glu) and INS, had a sensitivity of 73.9%, specificity of 67.8% and area under curve (AUC) of 0.77. There were no significant differences in ART outcomes and complications during pregnancy. The serum levels of Glu before pregnancy were associated with GDM both in endometriosis group (aOR 12.95, 95% CI 1.69-99.42, P = 0.014) and in control group (aOR 4.15, 95% CI 1.50-11.53, P = 0.006). CONCLUSIONS: We found serum Glu is related to the number of retrieved oocytes in control group, serum INS is related to the number of retrieved oocytes in endometriosis group, while serum Glu and INS before pregnancy are related to the occurrence of GDM in two groups. A prediction model based on metabolic indexes was established, representing a promising non-invasive method to predict endometriosis patients with known pregnancy history.


Assuntos
Endometriose , Feminino , Humanos , Gravidez , Estudos Retrospectivos , Oócitos , Técnicas de Reprodução Assistida , Glucose
14.
Am J Cardiol ; 204: 207-214, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556889

RESUMO

Because the 6-minute walking test (6MWT) is a self-paced submaximal test, the 6-minute walking distance (6MWD) is substantially influenced by individual effort level and physical condition, which is difficult to quantify. We aimed to explore the optimal indicator reflecting the perceived effort level during 6MWT. We prospectively enrolled 76 patients with pulmonary arterial hypertension and 152 healthy participants; they performed 2 6MWTs at 2 different speeds: (1) at leisurely speed, as performed in daily life without extra effort (leisure 6MWT) and (2) an increased walking speed, walking as the guideline indicated (standard 6MWT). The factors associated with 6MWD during standard 6MWT were investigated using a multiple linear regression analysis. The heart rate (HR) and Borg score increased and oxygen saturation (SpO2) decreased after walking in 2 6MWTs in both groups (all p <0.001). The ratio of difference in HR before and after each test (ΔHR) to HR before walking (HRat rest) and the difference in SpO2 (ΔSpO2) and Borg (ΔBorg) before and after each test were all significantly higher in both groups after standard 6MWT than after leisure 6MWT (all p <0.001). Multiple linear regression analysis revealed that ΔHR/HRat rest was an independent predictor of 6MWD during standard 6MWT in both groups (both p <0.001, adjusted R2 = 0.737 and 0.49, respectively). 6MWD and ΔHR/HRat rest were significantly lower in patients than in healthy participants (both p <0.001) and in patients with cardiac functional class III than in patients with class I/II (both p <0.001). In conclusion, ΔHR/HRat rest is a good reflector of combined physical and effort factors. HR response should be incorporated into 6MWD to better assess a participant's exercise capacity.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Frequência Cardíaca , Teste de Caminhada , Caminhada/fisiologia , Análise de Regressão , Teste de Esforço , Tolerância ao Exercício
15.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468072

RESUMO

Bone repair remains a clinical challenge due to low osteogenic capacity. Coactivator associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that mediates arginine methylation and endochondral ossification. However, the roles of CARM1 in osteoblastic differentiation and bone remodeling have not been explored. In our study, heterozygous CARM1-knockout (KO) mice were generated using the CRISPR-Cas9 system and a model of femoral defect was created. At day 7 postsurgery, CARM1-KO mice exhibited obvious bone loss compared with wild type (WT) mice, as evidenced by reduced bone mineral density (BMD), bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Deletion of CARM1 in mice lowered synthesis and accumulation of collagen at the injury sites. The alkaline phosphatase (ALP) activity and osteogenic-related gene expression were declined in CARM1-KO mice. To further understand the role of CARM1 in osteoblastic differentiation, bone marrow mesenchymal stem cells (BMSCs) were isolated from the tibia and femur of WT or CARM1-KO mice. CARM1 deletion decreased histone arginine methylation and inhibited osteoblastic differentiation and mineralization. The mRNA sequencing of CARM1-KO BMSCs revealed the possible regulatory molecules by CARM1, which could deepen our understanding of CARM1 regulatory mechanisms. These data could be of interest to basic researchers and provide the direction for future research into bone-related disorders.

16.
Hypertension ; 80(9): 1929-1939, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449418

RESUMO

BACKGROUND: The pathological mechanism of chronic thromboembolic pulmonary hypertension (CTEPH) is not fully understood, and inflammation has been reported to be one of its etiological factors. IgG regulates systemic inflammatory homeostasis, primarily through its N-glycans. Little is known about IgG N-glycosylation in CTEPH. We aimed to map the IgG N-glycome of CTEPH to provide new insights into its pathogenesis and discover novel markers and therapies. METHODS: We characterized the plasma IgG N-glycome of patients with CTEPH in a discovery cohort and validated our results in an independent validation cohort using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Thereafter, we correlated IgG N-glycans with clinical parameters and circulating inflammatory cytokines in patients with CTEPH. Furthermore, we determined IgG N-glycan quantitative trait loci in CTEPH to reveal partial mechanisms underlying glycan changes. RESULTS: Decreased IgG galactosylation representing a proinflammatory phenotype was found in CTEPH. The distribution of IgG galactosylation showed a strong association with NT-proBNP (N-terminal pro-B-type natriuretic peptide) in CTEPH. In line with the glycomic findings, IgG pro-/anti-inflammatory N-glycans correlated well with a series of inflammatory markers and gene loci that have been reported to be involved in the regulation of these glycans or inflammatory immune responses. CONCLUSIONS: This is the first study to reveal the full signature of the IgG N-glycome of a proinflammatory phenotype and the genes involved in its regulation in CTEPH. Plasma IgG galactosylation may be useful for evaluating the inflammatory state in patients with CTEPH; however, this requires further validation. This study improves our understanding of the mechanisms underlying CTEPH inflammation from the perspective of glycomics.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/etiologia , Fenótipo , Inflamação , Imunoglobulina G/genética , Polissacarídeos
17.
Front Aging Neurosci ; 15: 1130833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284018

RESUMO

Backgrounds: The relationship between kidney function and cognitive impairment in Parkinson's disease (PD) is poorly understood and underexplored. This study aims to explore whether renal indices can serve as indicators to monitor the cognitive impairment of PD. Methods: A total of 508 PD patients and 168 healthy controls from the Parkinson's Progression Markers Initiative (PPMI) were recruited, and 486 (95.7%) PD patients underwent longitudinal measurements. The renal indicators including serum creatinine (Scr), uric acid (UA), and urea nitrogen, as well as UA/Scr ratio and estimated glomerular filtration rate (eGFR), were measured. Cross-sectional and longitudinal associations between kidney function and cognitive impairment were evaluated using multivariable-adjusted models. Results: eGFR was associated with lower levels of cerebrospinal fluid (CSF) Aß1-42 (p = 0.0156) and α-synuclein (p = 0.0151) and higher serum NfL (p = 0.0215) in PD patients at baseline. Longitudinal results showed that decreased eGFR predicted a higher risk of cognitive impairment (HR = 0.7382, 95% CI = 0.6329-0.8610). Additionally, eGFR decline was significantly associated with higher rates of increase in CSF T-tau (p = 0.0096), P-tau (p = 0.0250), and serum NfL (p = 0.0189), as well as global cognition and various cognitive domains (p < 0.0500). The reduced UA/Scr ratio was also linked to higher NfL levels (p = 0.0282) and greater accumulation of T-tau (p = 0.0282) and P-tau (p = 0.0317). However, no significant associations were found between other renal indices and cognition. Conclusion: eGFR is altered in PD subjects with cognitive impairment, and predict larger progression of cognitive decline. It may assist identifying patients with PD at risk of rapid cognitive decline and have the potential to monitoring responses to therapy in future clinical practice.

18.
Cell Death Dis ; 14(6): 384, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385990

RESUMO

The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Receptores da Neurocinina-1 , Masculino , Humanos , Receptores da Neurocinina-1/genética , Aurora Quinase A , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Quinase C-alfa , Transdução de Sinais , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética
19.
Front Pharmacol ; 14: 1164367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361232

RESUMO

Background: N-linoleyltyrosine (NITyr), one of the anandamide analogs, exerts activity via the endocannabinoid receptors (CB1 and CB2), which showed anti-tumor effects in various tumors. Therefore, we speculated that NITyr might show anti-non-small cell lung cancer (NSCLC) effects via the CB1 or CB2 receptor. The purpose of the investigation was to reveal the anti-tumor ability of NITyr on A549 cells and its mechanisms. Methods: The viability of A549 cells was measured by MTT assay, and the cell cycle and apoptosis were both examined by flow cytometry; in addition, cell migration was tested by wound healing assay. Apoptosis-related markers were measured by immunofluorescence. The downstream signaling pathways (PI3K, ERK, and JNK) of CB1 or CB2 were examined through Western blotting. The expressions of CB1 and CB2 were detected by immunofluorescence. Finally, the AutoDock software was used to validate the binding affinity between the targets, such as CB1 and CB2, with NITyr. Results: We found that NITyr inhibited cell viability, hindered the cell cycle, resulted in apoptosis, and inhibited migration. The CB1 inhibitor, AM251, and the CB2 inhibitor, AM630, weakened the aforementioned phenomenon. The immunofluorescence assay suggested that NITyr upregulated the expression of CB1 and CB2. Western blot analysis indicated that NITyr upregulated the expression of p-ERK, downregulated the expression of p-PI3K, and did not affect p-JNK expression. In conclusion, NITyr showed a role in inhibiting NSCLC through the activation of CB1 and CB2 receptors involved in PI3K and ERK pathways.

20.
Biomolecules ; 13(5)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238688

RESUMO

Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Receptores de Lisoesfingolipídeo , Humanos , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...